SOFTWARE AND HARDWARE SOLUTIONS FOR THE EMBEDDED WORLD

Quick Reference Guide
for C language

This reference guide is intended to quickly introduce user’s to C
language syntax with the aim to easily start programming micro-
with controllers along with other applications.

@XAM PL@% Why C in the first place? The answer is simple: C offers
% unmatched power and flexibility in programming microcontrollers.

@ Software and Hardware
solutions for Embedded World

Daddy
Text Box

Daddy
Text Box

COMMENTS

CONSTANTS

C comments C++ comments
C comment is any sequence of characters placed mikroC allows single-line comments using two
after the symbol pair /*. The comment termi- adjacent slashes (//).

nates at the first occurrence of the pair */ fol- Example:
lowing theinitia /*. // Put your comment here!
Example: // It may span one line only.

/* Put your comment here! It
may span multiple lines. */

Character Constants

A character constant is one or more characters enclosed in single quotes, such as'A’, '+, or \n'. In
C, single-character constants have data type int.

Escape Sequences

The backslash character (\) is used to introduce an escape sequence, which alows the visual repre-
sentation of certain nongraphic characters.

The following table shows the available escape sequences in mikroC:

Sequence Value Char What it does
\a 0x07 BEL Audible bell
\b 0x08 BS Backspace
\f 0x0C FF Formfeed
\n 0x0A LF Newline (Linefeed)
\r 0x0D CR Carriage Return
\t 0x09 HT Tab (horizontal)
\v 0x0B VT Vertical Tab
\N\ 0x5C \ Backslash
v - e
|\ 0x22 " Double quote
\7? 0x3F ? Question mark
o ay | OTamgeripos
\xH any H = string of hex digits
\XH any H = string of hex digits

String Constants

A string literal (string constant) is a sequence of any number of characters surrounded by double
quotes.

Example:

"This is a string."

Enumeration Constants

Enumeration constants are identifiers defined in enum type declarations. The identifiers are usually
chosen as mnemonics to assist legibility. Enumeration constants are of int type. They can be used
in any expression where integer constants are valid.

KEYWORDS

FUNDAMENTAL
TYPES

DERIVED TYPES
ARRAYS

Example:
enum weekdays {SUN = 0, MON, TUE, WED, THU, FRI, SAT};
asm enum signed
auto extern sizeof Note:
break float static User can not use keywords 9"
case for struct bfor variable or function 9
char goto switch names. Keywords are
const if typedef reserved only for making ¢
continue int union language statements.
default long unsigned
do register void
double return volatile
else short while
Type Size Range
(unsigned) char 8-bit 0..255
signed char 8-hit - 128 .. 127
(signed) short (int) 8-bit -128 .. 127
unsigned short (int) 8-bit 0..255
(signed) int 16-bit -32768 .. 32767
unsigned (int) 16-bit 0 .. 65535
(signed) long (int) 32-bit -2147483648 .. 2147483647
unsigned long (int) 32-bit 0 .. 4294967295
. +1.17549435082E-38 ..
fl -
oat S2-bit +6.80564774407E38
. +1.17549435082E-38 ..
doubl 2-
oub-e S2-bit +6.80564774407E38
. +1.17549435082E-38 ..
1 doubl 32-bit
el ! +6,80564774407E38

Enumeration

This example establishes a unique integral

Syntox: type, colors, a variable c of this type,

enum tag {enumeration-list}; gnd a set of enumerators with constant
integer values (black = 0, red = 1, ...).

Example:

enum colors {black, red, green, blue, violet, white} c;

Array Declaration

Syntax:

type array_name|constant-expression] ;

Example:

int array_onel[7]; /* an array of 7 integers */

Array Initialization
Example:

int days[12] = {31,28,31,30,31,30,31,31,30,31,30,31};

MIKROELEKTRONIKA SOFTWARE AND HARDWARE SOLUTIONS FOR THE EMBEDDED WORLD Mééng et simple. ..

Multi-dimensional Arrays
Example:

float m([50][20]; /* 2-dimensional

array of size 50x20 */

POINTERS Pointer Declarations Example: Note: 2,
: _ You must initialize point-
. int *p = &a; R
Syntax: . . P . . ers before using them!.
type *pointer_name; or if declared like this:
int *p; Now ponter p points
p = &a; to variable a.
*p=5; asignes value
Null Pointers 5 to variable a.
A null pointer value is an address that is guaranteed to be different
from any valid pointer in use in a program.
Example:
int *pn = 0; /* Here's one null pointer */
int *pn = NULL; /* This is an equivalent declaration */
STRUCTURES Structure Declaration and Initialization Note:
) The member type can- 9
syntax: not be the same as the
struct tag { member-declarator-list }; struct type being cur-
Example: rently declared.
struct Dot {int x, vy;}; // declaration However, a member can
struct Dot p = {1, 1}; // initialization| be a pointer to the struc-
ture being declared!
Structure Member Access
Example:
struct Dot *ptr = p; // declares pointer to struct p
p.x = 3; // direct access to member X
ptr->x = 4; // 1indirect access to member X
ptr->xisidentica to (*ptr) .x!
UNIONS Union Declaration
Syntax: Difference between structure
. b decl 11 . and union is that unlike struc-
union tag { member-declarator-list }; ture’s members, the value of
Union Member Access only one of union’s members
Example: can be stored at any time..
union Spot {int x, y;} p;
p.x = 4;
Display(p.x) ; // This is valid! Displays value of member x!
Display(p.y): // This is invalid!
p.y = 7;
Display(p.vy); // This is valid! Displays value of member y!
BIT FIELDS Bit Fields Declaration
Syntax:
struct tag { bitfield-declarator-1ist }; %
B - o =5

Example: Bit Fields Access

struct Port ({ Example: This code will turn ON
R rroiend =1 ST
other_leds : 7; PortA.other_leds = 0; '
} PortA;

DECLARATIONS Typedef Specifier
Syntax; This code will declare a synonym for
"unsigned long int". Now, synonym

typedef <type-definition> synonym; e mEm b U 65 e

Example:)) . identifier to declare variable i of type
typedef unsigned long int Distance; "unsigned long int".
Distance 1i;
asm Declaration Example:
Syntax: asm { This code will turn
asm { MOVLW 3 ON LEDO and
block of assembly instructions MOVWFEF PORTB S RES RO
} }
FUNCTIONS Function Declaration T p
) is will declare a func-
Syntax. . . tion named add that
type function_name(parameter-declarator-1ist) ; accepts two parameters
Example: of type int.
int add(int a, int Db);
Function Definition We can call it to calcu-
Syntax: late sum of two num-
type function_name (parameter-declarator-1list) { bers:
function body
} int c;
EXOmp|e: bc = add(4, 5);
int add(int a, int Db){ Variable ¢ will then be
return a + b; 9.
}
OPERATORS mikroC recognizes following operators:
- Arithmetic Operators

- Assignment Operators

- Bitwise Operators

- Logical Operators

- Reference/Indirect Operators (see Pointers)

- Relational Operators

- Structure Member Selectors (see Structure Member Access)
- Comma Operator ,

- Conditional Operator ?:

- Array subscript operator [] (see Arrays)

- Function call operator () (see Function Calls)

- sizeof Operator

- Preprocessor Operators # and ## (see Preprocessor Operators)

MIKROELEKTRONIKA SOFTWARE AND HARDWARE SOLUTIONS FOR THE EMBEDDED WORLD maéény et simple. .. 4

Operators Precedence and Associativity

Precedence Operands Operators Associativity
15 2) [1] : -> |eft-to-right
14 1 oo YN - & right-to-left
13 2 @ / % |eft-to-right
12 2 + - left-to-right
11 2 << >> |eft-to-right
10 2 < <= > >= |eft-to-right
9 2 == 1= |eft-to-right
8 2 & |eft-to-right
7 2 ~ |eft-to-right
6 2 | left-to-right
5 2 && left-to-right
4 2 || left-to-right
3 3 B8 |eft-to-right
2 2 T T LT 5T gnttoeft

1 2 , |eft-to-right
Arithmetic Operators
Operator Operation Precedence
+ addition 12
- subtraction 12
* multiplication 13
/ division 13
5 returns_the rem_ai nder_ of integer division (cannot be 13
used with floating points)
+ (unary) unary plus does not affect the operand 14
- (unary) unary minus changes the sign of operand 14
++ increment adds 1 to the value of the operand 14
== decrement subtracts 1 from the value of the operand 14
Relational Operators
Operator Operation Precedence
== equal 9
= not equal 9
> greater than 10
< less than 10
>= greater than or equal 10
<= less than or equal 10

/) Note:
Use relational operators to test equality or inequality of expressions. All relational operators return
true or false.

Bitwise Operators

Operator Operation Precedence
s bitwise AND; returns 1 if both bits are 1, otherwise 9
returns 0
bitwise (inclusive) OR; returns 1 if either or both bits are 9
1, otherwise returns 0
N bitwise exclusive OR (XOR); returns 1 if the bits are 10
complementary, otherwise O
~ bitwise complement (unary); inverts each bit 10
<< bitwise shift left; moves the bits to the |eft, see below 10
>> bitwise shift right; moves the bits to the right, see below 10
Examples: Examples:
operandl : 20001 0010
operand2 : %0101 0110 operand : %0101 0110
operator & : %0001 0010 operator ~ : %1010 1001
operator / : %0101 0110 operator << : %1010 1100
operator © : %0100 0100 operator >> : %0010 1011
§,/ Note:

With shift left (<<), left most bits are discarded, and “new” bits on the right are assigned zeroes. With
shift right (>>), right most bits are discarded, and the “freed” bits on the left are assigned zeroes (in case
of unsigned operand) or the value of the sign bit (in case of signed operand).

Logical Operators

Operator Operation Precedence
&& logical AND 5
|| logical OR 4
! logical negation 14

Operands of logical operations are considered true or false, that is non-zero or zero. Logical
operators always return 1 or 0.

Example:
if (SWl or SW2) LEDl1 = 1; else LED2 = 1;

If variable sw1 or variable Sw2 is true (non-zero) then expression (SWl or Sw2) isequa 1
(true) and LED1 isturned ON. In case that both variables Sw1 and sw2 are equal O (false)
then else statement is executed and LED2 is turned ON.

Conditional Operator ? : Example:

Syntax: b(i > 0) ? LEDL =1 LED2 = 1;
exprl ? expr2 : expr3 if variable i is greater then 0 LED1 will be turned ON
else LED2 will be turned ON.

MIKROELEKTRONIKA SOFTWARE AND HARDWARE SOLUTIONS FOR THE EMBEDDED WORLD Méén? et simple. .. 6

ASSIGNMENT Simple Assignment Operator Example: This code declares vari-
OPERATORS Syntax: int a; able a and assigns value
expressionl = expression2 a = 5; Stoit
Compound Assignment Operators
Syntax:
expressionl op= expressionZ?
where op can be one of binary operators +, -, *, /, %, &, |, *, <<, Of >>.
Compound assignment has the same effect as:
expressionl = expressionl op expressionZ2
Example: Example:
counter = counter + 1; items = items * 3;
isthe same as: isthe same as:
counter += 1; items *= 3;
Sizeof Operator
Prefix unary operator sizeof returns an integer constant that gives the size in bytes of how much
memory space is used by its operand.
Example:
sizeof (char) /* returns 1 */
sizeof (int) /* returns 2 */
sizeof (unsigned long) /* returns 4 */
COMMA One of the specifics of C isthat it alows you to use comma as a sequence operator to form the so-
EXPRESSIONS called comma expressions or sequences. It isformally treated as a single expression.
Syntax:
expression_1, expression_2, ...expression_n;
This results in the left-to-right evaluation of each expression, with the value and type of the last
expression (expression_n) giving the result of the whole expression.
Example:
int i, j, arrayl[5];
i =49 =0;
array[j+2, i+1l] = 1;
STATEMENTS Statements can be roughly divided into: This Yeoda deciares| vanables i}, and
array of 5 integer elements. The last line
- Labeled Statements of code is the same as if we wrote
- Expression Statements array[1] = 1; because the value of comma
- Selection Statements expression j+2, i+1 is value of i+1.
- Iteration Statements (L oops)
- Jump Statements
- Compound Statements (Blocks)
B Vo T

SELECTION
STATEMENTS

ITERATION
STATEMENTS

Labeled Statements
Syntax:

label_identifier statement;
A statement can be labeled for two reasons:

1. The label identifier serves as a target for the unconditional goto statement,

Example: o
bThls is infinite loop that calls the
Display function.

loop : Display (message) ;
goto loop;
2. The label identifier serves as atarget for the switch statement. For this
purpose, only case and default labeled statements are used:
For more information see

case constant-expression statement itch stat "
default statement switch statement.
If Statement Note:
Syntox: Thc()e iise keyword with ‘Q’
if (expression) statementl [else statement2] an alternate statement
Example: is optional.
if (movex == 1) x = x + 20; else y =y - 10;
Switch Statement Example:
Syntax: switch (input) {
switch (expression) { » case 1 : LEDl = 1;
case const-expression_1 statement_1; case 2 LED2 = 1;
case 3 : LED3 = 1;
default LED7 = 1;

case const-expression_n
[default statement;]

Statement_n;

This code will add number
2 to variable s 6 times. At
the end s will be 12.

This code will turn on LED depending of input value. If the
value is diffrent then ones mentioned in value list in case state-
ment then default statement is executed.

While Statement Do Statement

Syntax: Syntax:

while (expression) statement do statement while (expression);
Example: Example:

int s, i; int s, 1i; This code will add

s =1=20; s =1=20; number 2 to vari-
while (i < 6) { do { able s 7 times. At

s = s + 2; s = s + 2; the end s will be 14.

i =1+ 1; i =1 +

} } while (i < 7);

MIKROELEKTRONIKA SOFTWARE AND HARDWARE SOLUTIONS FOR THE EMBEDDED WORLD maéén? et simple. ..

JUMP
STATEMENTS

For Statement

Syntax:

for ([init-expl; [condition-expl; [increment-expl) statement
Example:

for (s = 0, 1 = 0; i < 5; i++) { This code will add number 2 to variable s
s += 2; 5 times. At the end s will be 10.

}

Break Statement
Use the break statement within loops to pass control to the first statement following the innermost
switch, for,while, or do block.

Example:
int i = 0, s = 1; // declares and initiate variables 1 and s
while (1) { // infinite loop
if (i == 4) break;
s = s * 2; This code will multiply variable s with number 2
i++; (until counter i becomes equal 4 and break state-
} ment executes). At the end s will be 16.

Continue Statement
You can use the continue statement within loops to skip the rest of the statements and jump to
the first statement in loop.

Example:
int 1 = 0, s = 1; // declares and initiate variables i and s
while (1) { // infinite loop
s = s * 2;
i++; bThis code will multiply variable s with number 2
if (i != 4) continue; (continue statement executes until counter i is not
break; equal 4). At the end s will be 16.
}
Goto Statement Return Statement
Syntax: Use the return statement to exit from the current
goto label_identifier; function back to the calling routine, optionally
returning a value.
Example: ' Syntax:
loop : Display(message); return [expression];
goto loop; Example:

This is infinite loop'that calls the c = add(4, 5);

Display function. ce
int add(int a, int b) {
return a + b;

}

Compound Statements (Blocks)
A compound statement, or block, is alist (possibly empty) of statements enclosed in matching
braces {}.

PREPROCESSOR

MACROS

Preprocessor Directives
mikroC supports standard preprocessor directives:

(null directive) #if
#define #ifdef
#elif #ifndef
#else #include
#endif #line
#terror #undef

Defining Macros

Syntax:

#define macro_identifier <token_ sequence>

Example:

#define ERR_MSG "Out of range!"

main() { Compiler will replace ERR_MSG

bwith string “Out of range!” and
when Show function is executed

it will display “Out of range!”.

if (error) Show(ERR_MSG) ;

}

Macros with Parameters

Syntax:

#define macro_identifier(<arg list>) token_sequence
Example:

A simple macro which returns greater of its 2 arguments:

#define MAX (A, B) ((A) > (B)) ? (A) : (B)

X = MAX(a + b, c + d);

Preprocessor will transform the previous line into:
x = ((a +Db) > (c+d) ? (a+Db) : (c+4d)

Undefining Macros
Syntax:
#undef macro_identifier

Directive #undef detaches any previous token sequence from the macro_identifier;the
macro definition has been forgotten, and the macro_identifier isundefined.

Note:

You can use the #ifdef and #ifndef conditional directives to test whether any identifier is currently

defined or not.

File Inclusion Explicit Path
Syntax: Example:
#include <header name> #include "C:\my_ files\test.h"

#include "header_name"

MIKROELEKTRONIKA SOFTWARE AND HARDWARE SOLUTIONS FOR THE EMBEDDED WORLD maéén? et simple. .. 1@

CONDITIONAL
COMPILATION

1 1 maéaty ét ocmple... MIKROELEKTRONIKA SOFTWARE AND HARDWARE SOLUTIONS FOR THE EMBEDDED WORLD

Directives #if, #elif, #else, and #endif
Syntax:

#if constant_expression_1
<section_1>

[#elif constant_expression_2
<section_2>]

[#elif constant_expression_n
<section_n>]

[#else
<final_section>]

#endif

Example:
#if osC ==

// code for oscillator 8Hz

l #elif OSC == 10

// code for oscillator 10Hz
#else
// code for other oscillators

#endif

Directives #ifdef and #ifndef
Syntax:

#ifdef identifier // or
#ifndef identifier

Example:
#ifndef MODULE

// code that will be compiled

// 1f identifier MODULE 1is not

// defined whith #define
// directive

#endif

In this example only ‘one code section is
compiled regarding of oscillator frequency.

